Axiom
하나의 이론에서 증명 없이 바르다고 가정하는 명제, 즉 조건 없이 전제된 명제.
논리학에서는 무증명명제(無證明命題)라고도 한다. 수학에서의 공리는 기하학 원론의 공준 및 공통 개념에서 유래하며, 기하학을 수립해 가기 위한 전제조건을 말한다.
역사
공리와 공준을 보통공리, 요청(要請)이라고 일컬은 때도 있었으나, 뒷날 이들을 일괄해서 공리라고 규정지었다. 기하학 원론에서는 이와 같은 공리와 정의만을 근거로 하여 논리적인 엄밀한 증명에 따라 기하학을 구성하였으며, 오랫동안 이것이 체계적인 학문의 전형처럼 생각되었다.
그러나 유클리드 공리 중 평행선 공리는 다른 어느 공리나 공준보다도 표현이 길고 복잡해서 ‘자명한 이치’라고 하는 데에 의문을 품게 하였다. 이 의문에서 비롯된 것이 비유클리드기하학이며, 이로 인해 수학자들에게 공리의 성격에 대한 반성의 기회를 주게 되어, 점차로 공리에서 ‘자명한 이치’라는 뜻이 약해지고, 단지 ‘이론의 기초로서 가정한 명제’를 그 이론의 공리라고 하게 되었다.
힐베르트는, 모든 이론은 엄밀한 공리적 방법으로 정립(定立)해야 한다는 생각을 발표하여 공리주의 수학을 이끌어냈다. 현대의 수학은 모두 이 공리주의에 따라 수립되고 있다. 어떤 하나의 이론을 공리주의적 견지에서 정리하는 일을 공리화한다고 한다.