The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity
- 2025-06-08 (modified: 2025-08-21)
- 출판일: 2025년 6월
- 별칭: The Illusion of Thinking
- 저자: Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, Mehrdad Farajtabar
2025 paper by Apple
Abstract
Recent generations of frontier language models have introduced Large Reasoning Models (LRMs) that generate detailed thinking processes before providing answers. While these models demonstrate improved performance on reasoning benchmarks, their fundamental capabilities, scaling properties, and limitations remain insufficiently understood. Current evaluations primarily focus on established mathematical and coding benchmarks, emphasizing final answer accuracy. However, this evaluation paradigm often suffers from data contamination and does not provide insights into the reasoning traces’ structure and quality. In this work, we systematically investigate these gaps with the help of controllable puzzle environments that allow precise manipulation of compositional complexity while maintaining consistent logical structures. This setup enables the analysis of not only final answers but also the internal reasoning traces, offering insights into how LRMs “think”. Through extensive experimentation across diverse puzzles, we show that frontier LRMs face a complete accuracy collapse beyond certain complexities. Moreover, they exhibit a counterintuitive scaling limit: their reasoning effort increases with problem complexity up to a point, then declines despite having an adequate token budget. By comparing LRMs with their standard LLM counterparts under equivalent inference compute, we identify three performance regimes: (1) lowcomplexity tasks where standard models surprisingly outperform LRMs, (2) medium-complexity tasks where additional thinking in LRMs demonstrates advantage, and (3) high-complexity tasks where both models experience complete collapse. We found that LRMs have limitations in exact computation: they fail to use explicit algorithms and reason inconsistently across puzzles. We also investigate the reasoning traces in more depth, studying the patterns of explored solutions and analyzing the models’ computational behavior, shedding light on their strengths, limitations, and ultimately raising crucial questions about their true reasoning capabilities.
Conclusion
In this paper, we systematically examine frontier Large Reasoning Models (LRMs) through the lens of problem complexity using controllable puzzle environments. Our findings reveal fundamental limitations in current models: despite sophisticated self-reflection mechanisms, these models fail to develop generalizable reasoning capabilities beyond certain complexity thresholds. We identified three distinct reasoning regimes: standard LLMs outperform LRMs at low complexity, LRMs excel at moderate complexity, and both collapse at high complexity. Particularly concerning is the counterintuitive reduction in reasoning effort as problems approach critical complexity, suggesting an inherent compute scaling limit in LRMs. Our detailed analysis of reasoning traces further exposed complexitydependent reasoning patterns, from inefficient “overthinking” on simpler problems to complete failure on complex ones. These insights challenge prevailing assumptions about LRM capabilities and suggest that current approaches may be encountering fundamental barriers to generalizable reasoning. Finally, we presented some surprising results on LRMs that lead to several open questions for future work. Most notably, we observed their limitations in performing exact computation; for example, when we provided the solution algorithm for the Tower of Hanoi to the models, their performance on this puzzle did not improve. Moreover, investigating the first failure move of the models revealed surprising behaviors. For instance, they could perform up to 100 correct moves in the Tower of Hanoi but fail to provide more than 5 correct moves in the River Crossing puzzle. We believe our results can pave the way for future investigations into the reasoning capabilities of these systems.
Limitations
We acknowledge that our work has limitations. While our puzzle environments enable controlled experimentation with fine-grained control over problem complexity, they represent a narrow slice of reasoning tasks and may not capture the diversity of real-world or knowledge-intensive reasoning problems. It is notable that most of our experiments rely on black-box API access to the closed frontier LRMs, limiting our ability to analyze internal states or architectural components. Furthermore, the use of deterministic puzzle simulators assumes that reasoning can be perfectly validated step by step. However, in less structured domains, such precise validation may not be feasible, limiting the transferability of this analysis to other more generalizable reasoning.