# ML crash course - Numerical data > Machine learning crash course 중 Numerical data 챕터 [Machine learning crash course](https://wiki.g15e.com/pages/Machine%20learning%20crash%20course.txt) 중 [Numerical data](https://wiki.g15e.com/pages/Numerical%20data.txt) 챕터 https://developers.google.com/machine-learning/crash-course/numerical-data ## Introduction ## How a model ingests data using feature vectors ## First steps ### Visualize your data ### Statistically evaluate your data ### Find outliers ## Programming exercises https://developers.google.com/machine-learning/crash-course/numerical-data/programming-exercises ## Normalization ### Linear scaling ### Z-score scaling ### Log scaling ### Clipping ### Summary of normalization techniques ## Binning ### Binning example: number of shoppers versus temperature ### Quantile Bucketing ## Scrubbing ## Qualities of good numerical features ### Clearly named ### Checked or tested before training ### Sensible ## Polynomial transforms ## Conclusion ## What's next - [ML crash course - Categorical data](https://wiki.g15e.com/pages/ML%20crash%20course%20-%20Categorical%20data.txt)